"
iw’ Universitat Bremen

FEB-Projekt

Aperiodic Order of Quasicrystals
and Diffraktion

By: Lothar Dirks und Chris Michel Peters

06.09.2018

Supported by: Arne Mosbach und Prof. Dr. Marc Ke3ebohmer

We want to thank Arne Mosbach for the creation of this work sheet on substitutions.
The main goal of our own in this was the successfull completion of the tasks given in
it.

Introduction

The aim of this sheet is to present some basic properties and notation of the structures
in question. Along with this are tasks, which should be dealt with while progress-
ing within the sheet. The next paragraph will introduce basic notations to work with
languages.

For a finite alphabet A we denote by A* = {u € A" : n € N} the set of all finite
words in A and by AY all infinite words. A semigroup homomorphism o: A — A*
on A* or A" is called substitution. The name semigroup homomorphism is from the
fact that o-(u) — o (up)o(u)o(uy) . .. is well defined, for any finite of the infinite word
u. As just indicated finite sequences u = (ui);’:‘()l € A" for some n € N may also be
denoted by ugu;u; . .. u,—; or may even be functions u: {0,...,n—1} — A". The length
of any u € A* U A is given by |u| := n, if u = ug...u,_; € A", while |u| = oo, if
u € AY. Moreover for any v € A* we define

lul, =[{neN:VO<i<-1u._=vl,

to be the occurences of v in u. As already used and known from sequences, letters
of u are adressed by u, for some n € N, factors of u are all finite words of the form
Uppem) = {t; : n < i < n+ m} and subwords of u are factors, but may also be infinite,
hence of the form uy,). The prefix of u of length n is defined to be the first n letters of
U, = ujo,—-1], while the suffix of length n given by u(—p,-17 is only defined for finite
words.

Definition 0.1. A word u € A" is called periodic, if it exists a v € A* such that for all
m € N, Uy = V", where v € A" is the unique word that satisfies (); = V(; mod i)
for 0 < j < m|v|. u is ultimately periodic, if it exists an infinite periodic subword of u.

Remark 0.2. Take note that N = {0,1,2,3,...}, while N, = {1,2,3,4,...}. Also we
make use of the convention A° := {0}, while the empty word is also denoted by .
1 Rotation substitutions

From now on we will only consider the alphabet A = {0, 1}.

Definition 1.1. In the following let 7, p, 6 and 71y denote the semigroup homomor-
phisms on {0, 1}*,{0, 1}*' determined by

00 0~ 01 01 0~ 01
T: s p: s 6: s TIM :
110 11 10 110

Further, for any finite or infinite non-empty word u = uouusus ... we set S(u) =
uyupus ... and if u is the empty word S (u) := u.

Definition 1.2. Let (a;)ien € NEI* be a sequence of natural numbers. We define for
1 € {0, 1}, L := 16l = 16(]) the finite words

J

w;

T \pgns i), (<1) = -1

j {‘r‘“p“z‘r“3 LT p4T (L), -1/ =1
wg =0, ‘”(1) =1, wi =1L,
where j > 2.

Remark 1.3. Some consequences of Definition 1.2 are

01, [=0

L =100 = typl = .
™ {10, I=1

and the cases (—1)/ € {—1, 1} just gives off if j is even or odd.
Example 1.4. Letn € N,
P"(01) =01™+!, 7(01) =010" = w,
p"(10) =101", 7(10) =10™" = w).

A direct consequence of the former observations are the identities p76 = pbp = O1p.
These obervations are expressed by the following diagram for all n € N

7'(10) — 0"(01)
0182 O 1052 10S? O 0152
7(01) - p"(10)
We conclude this example by noting down a)]2 as a mixture of w’s
w§ =1 (01%) = 0(10“)™ = w)(w})™,
w? = (1017 = 1070(10)2™! = wjwd(w])? ™.
This observation holds in general and will be discussed in the upcoming lemma.

Lemma 1.5. Let j > 2 and | € {0,1}, then w{ can also be expressed by one of the
following cases:

jeven:

o e @y L 1=0
S A s K A

jodd:

-1 j-2, j-lyaj-1
ol o (WY, 1=0
Wl =1% @1 @y

J
P o] (W) Y , =1
Proof. The proof is done by induction. In fact Example 1.4 shows the base case of the

induction, whether in the following the inductive step is given by using the calculations
done in the example.

For an even j that is:

i Tpe® . 4 (019) , 1=0
w =
Folrape ro01e7ly) 1=1
_ it N0 (14 p% L. % (10))Y , 1=0
hp% . 41 10) 4 p% L pY2 T (01 (14 p . . .‘r"f'*“l(lO))“/_1 , 1=1

{ R (i , 1=0

w{l}Z(jl)ajl , 1=1

While an odd j gives:

i et 10vTh L =0
o lrmpe . pt(10%) =1

0

ye
hp® . p 0T p L T (10) (14 p . . .p“f*“l(Ol))ufl , 1=0
{ a1 p% ...T“/*Z‘I(IO)(T“Ip”Z...p“f*“'(Ol))“"' , =1
»

_Jop o wgHh L =0
w{z(w{)') o I=1

We conclude this section by showing the relation diagram between ‘*’z for different
choices of [.

Corollary 1.6. For all j € N, the following diagram commutes

(—)
90)1

01S2| [108* 108*| |01S2

o’

(—)
Wy t9“)0

Proof. The proof is a straightforward inductive application of the diagram shown in
Example 1.4. O

2 Subshifts

We want to look at arbitrary concatenations of substitutions generating the words wlj ,
as given by Definition 1.2 and therefore define

2 = {T“‘p”27“3 ...T“”‘p"f_ITTM :Vj e 2N, and (a,-)f € Nj withaj,a; > 2} U
{rmp@r pUir ey s Vj € QN+ 1) and (@)L, € N with ay,a; > 2}
Note that as a consequence the Morse-Substitution T?M ¢ 2.

Exercise 2.1. Make yourself familar with the Morse-Substitution, also called Thue-
Morse-Substitution. It is adviced to study at least two of the following sources [1, 2, 3]
for a minimum of one hour.

Remark 2.2. Any sequence (a;);en € N?* induces a continued fraction expansion for
an irrational number x = [0;ay, az,...] € [0, 1]. For finite continued fractions remem-
ber [0;ay,...,a,, 1] =[0;ai,...,a,+ 1] and in order to prevent uniqueness we always
require the last continued fraction entry to be > 2. This number x is approximated by

% =1[0;a1,as,...,a,] for every n € N and especially

@ =T, (k? mod 1) = 10,1 (kps mod g,),
for k € {0,...,q, — 1} and a, > 2. Note whenever a, = a,.; = 1 we can still define
an approximand of x by the former equality of continued fractions. Further by wf =
0152w, it follows immediately

(wohk = T2z (k? mod 1) = L1 p,y kpa mod g,) = Tjo,p,-17 (kpp =1 mod gn),
n

for k € {0,..., g, — 1}. In the special case x = [0;ay],
(Wi = 10 (k mod a,) = 107" = 797(10).
As another example take 7/16 = [0; 2, 3,2], then
7'p371(10) = 1001010100101010 = (107, (7k mod 16))1ez, -
We will further only consider x € [0, 1/2), || = |wj| = gx-

Exercise 2.3. Write a program in your favorite language, but not in .Z(2), that is capa-
ble of generating arbitrary long prefixes of fixpoints associated to periodic application
of elements of 2.

Tip: In matlab you may want to use ’strrep’.

Processing of the Exercise 2.3. We decided to use matlab as our only programming
language. In matlab we implemented two functions, which are able to generate prefixes
of length n for a given input string. The first function 16 lets you generate the prefix
of a certain element of 2 requiring the requested length of the associated fixpoint, the
sequence of numbers to map and the sequence (a,) to represent the element of 2 as
input whilst the second function 17 generates the prefix of a random concatenation of
elements of 2 by giving the requested length of the associated fixpoint, the sequence
of numbers to map and three integres to limit the possible elements of 2.

2.1 Primitive substitutions

Definition 2.4. A substitution o: A — A* is called primitive if for all a, b € A exists
an k € N such that b is a letter of o%(a). It is of constant length, if it exists a ¢ € N, for
all a € A such that |o(a)| = q.

Lemma 2.5. Any o € 2 is a primitive substitution of constant length.

Proof. Let o € 2. Consider 0(0) = 5(rtm(0)) = 6(0)5(1), where oo = & o try. If j
is even, than we use p%~!, where a i =250 we get from Example 1.4

' (p“71(01)) = ¢7(01%) = 1 € (0). (1)

Where ¢~ is defined by & = 0@ o p~!. This implies the fact that 1 € o-(0) because o” is
just a concatenation of p and 7, wich always keep the 1 in their image. With the same
arguments it follows that

@0 = (010971 = 1 € o(0).)

if jis odd. We get the same result for o(1), if we use Example 1.4 with (1) and (2) we
get 0 € o(1).
This also gives us the constant length of o as |o(1)| = |0”(10)| = |’ (01)] = [o(0)]. O

Exercise 2.6. Proof Lemma 2.5.

Lemma 2.7. Let o be a substitution of constant length g with a u = upuius . .. € {0, 1}
such that o(u) = u. Additionally there exists a letter a and a k < q — 1 such that for all
b e A ob)y = a. That is, there exists a column of a’s in the substitution.

With that each ugn-1,; denotes an ultimate periodicity of ¢",m € N,, where | €
{22162 aiq' : a; €{0,...,q — 1\{k}} has base g expansion without k’s.

Note that if the set is empty, then [:= Q.

Proof. As o(b); = a for any b € A and o(u) = u, we have uy,,, = a for any n € N.
This implies that for all m € N the words o™ (ug,+«) are the same. As o is of constant
length ¢, their distance to each other is ¢”*! and their first known occurence is at ¢"k.
Hence each letter ugn,; for I € {Z;ﬁgl aiq' : a; € {0,...,q — 1}} has period ¢"*'. But
these also include all letters with smaller periods we know of. As these are originated
from a at position k, we can exclude them by forbidding any occurence of k in the base

q expansion of /. m}

Corollary 2.8. Let o be a substitution of constant length q with a u = uouiuy ... €
{0, 1}V such that o(u) = u. Additionally there exists a letter a , a divisor p of q and a
hefo,... ,% — 1} such that for all b € A, O-(b)%_(h+1) =aforallnefl,...,p}

With that each uqm,l(ﬁ_(hﬂ))ﬂ denotes an ultimate periodicity of %, m € Ny, where
P
le(Srag aiel0.....q= INE —(h+ 1.2 —(h+1).....q— (h+ D))

Proof. As forallb € An € {1,...,p}: c(B)u_py) = a and o(u) = u, we have
UL (ri1)-(he1) = @ for any n € N. This implies that forall m € N the words o-’”(u%(nﬂ)_(hﬂ)))
are the same for each n € N. As o is of constant length ¢, their distance to each
other is % and their first known occurence is at (% —(h+ 1)) ¢q". Hence each letter

u(%_(hm)q,w forl e {2?501 aiq' - a; € {0,...,q — 1}} has period ‘]m’%l. But these also

include all letters with smaller periods we know of. We can exclude them by forbidding
any occurence of ';—‘1 —(h+1),ne{l,...,p}in the base g expansion of /. m]

Exercise 2.9. Write down the prefix of length 100 of # = lim,—, 0*(0) of o = T
and verify 2.7.

Processing of the Exercise 2.9. The following listing shows the prefix of length 100
generated by 16. In this case we have to generate a prefix of length 100 and have to
begin with zero. As mapping we have o = 777, which implies we have to use [2] as
sequence in generator3, because j is odd and we have 7>~ '774 = t77y. This generates
the following string 1.

From Lemma 2.7 we know, that there should be for each u -1, an ultimate periodicity

m-2

of ¢",m € N, where [€ (Y02 aig’ : a; € {0,...,q — I)\{k}} has base g expansion

without k’s. As the map o is of constant length 3 with column at o, every third ele-
ment of this string is a red marked zero, which denotes the periodicity of three. The
periodicity of nine is in contrast to the periodicity of three a block 01 starting at o.
This block you see with a black underline.

Listing 1: Prefix of length hundred

>> Generator3(100,'0"' ,[2])
ans —

'01010001010001001001010001 *
'010001001001010001001010 "
'0010010100010100010010010
'1000101000100100101000100

To check the periodicity of 27 it is better to generate a string of length 104. With
Lemma 2.7 we see, that we have two blocks of two elements 01 and 10 starting at
018,19 and 01 22. This time we want to show this periodicity with a matlab function.
You can see in listing 20. We consider the block 071519202122 as the missing o is
already known to have the ultimate periodicity of 3.

Listing 2: Periodicity of length 27

>> periodicity (19,23)
ans = 0 1 0 1 0

>> periodicity (46,50)
ans = 0 1 0 1 0

>> periodicity (73,77)
ans = 0 1 0 1 0

>> periodicity (100,104)
ans = 0 1 0 1 0

Listing 3: Periodicity of length 27

>> Generator3 (104,'0' ,[2])
ans =

'0101000101000100100101000
'1010001001001010001001010"
'00100101000101000100100101"
'0001010001001001010001001010"

Corollary 2.10. For every | € N, which does not have any k in its base q expansion,
that is also | € {372, aiq' a; €1{0,...,q — 1)\{k}}, we have that u; is not equal to any
of the letters described by Lemma 2.7. In a prefix of u of length ¢ there are (¢ — 1)™
many of these, where m € N,.

Remark 2.11. Note that it is not that easy to show that there exists no periodicity. Take
for example Trm(a) = ab, Tym(b) = ba, which has no periodicity. While o(a) = aba,
o(b) = bab generates the sequence ababababababababababab . .., which is indeed
2-periodic.

Exercise 2.12. The convolution with respect to a Borel-measure u is a well defined
abelian bilinear operator from L\ (G)xL)(G) = L,(G) given by (f*g)(y) = f f)gy—
x)du(x).

For (G,) € {(R, 2),(Z, 67)}, the averaged convolution with respect to u is defined
for bounded Borel-measurable functions f, g: G — C, whenever for all x € G the limit

1
lim ———(f1- 1- ,
am N, N])(f -~ * (8l-nny) ()
exists. In this case we also write f @ g (x).

i) Proof that on the set X = {(f, g) : (f ® g) exists} the averaged convolution shares
the properties of convolution. Le. for (f, g), (h, g) € X and a constant a we have
(af+h)@gexistsand f@g=g® f.

ii) Show for a bounded Borel-measurable function / and f € L}I(G) thath® f = 0.
iii) For G = Z show 1z ® 17 = 15.

Processing of the Exercise 2.12. First we want to remark, that L/II(G) is a vector space
with (L}(G), +,-) and a algebra with (L}(G),).

i) For (f, g),(h,g) € X and a constant a we have
a(f ®g) + (h®g)(x) =a lim %v(f]l[—N,N]) * (8L -n.np)(x)
+ Jim SO) (8 ()
= lim S @) » (gl (o)
+ Jim SO o) (8 ()

1
= 131_120 W((af Trnay) * (l—na)(x)
+ (M —_nny) * (8L—n (X))
. 1
= 1\]/1_{120 ﬁ(((af Ti_np) + (W _y) * (gL—y (X))
=((af +h) ® g)(x).

Next on we check if (e, f), (g, h) € X, their combined limit can be taken. For that
fix an x € G and set

— (3]]-[7n,n]) * (f]l[fn,n]) (x) b = (g]l[fn,n]) * (h]l[fn,n]) (x)
" u([-n,nl) o u([-n,n])

By choice lim,_, a, =: a and lim,_ b, =: b exists, therefore if we take any
e>0itexistsan N € Nsuchthata,—-e<a<a,+cand b,—& < b < b, + & for
alln > N. Butthena,+b,—2& < a+b < a,+b,+2¢&, hence lim,_,., a,+b,, = a+b
and we can use the properties of convolution for each n € N, while n approaches
infinity.

s neN,

ii) Let 4 be a bounded measurable function and f € Llll (G), then

1
(h® fix) =]&l_f}go ﬁ(hﬂ[—zv,zv]) * (flyn(x)
. 1
<]&l_f}go ﬁ(sup(h)]l[_N,N]) * (fL-yn)(x) = 0.

The last expression equals zero, because the convolution is bounded and the
integral of f is finite, therewith the whole expression is finite and limy_, ﬁ =0.

iii) Let G = Z.
Iz®1z = li 1(]l]l) (121)(x)
= — *
A Z Nlm N ZL[-N,N) zAL[-NNIX

. 1
= 1\1121010 Tv(]lzm[—N,N]) * (Mzn—nnp)(X)

= 1\1/1_{1‘}0 N Z Lzn-nn () Lza-nn (x = k)
keZ
. 1
= 1\1/]_1330 N Z Iznpvm(x = k) = 1z.
KEZN[=N,N]

The last two equations are true, because Izn—ynj(k) = 1 for k € Z N [-N,N]
and Izn-yn(x —k) = 1,if x —k € ZN[-N,N] and if x — k € Z\[-N, N] then
1zn-nn(x — k) = 0. For N to infinity x — k is an element of Z, so we have one
as solution.

Lemma 2.13. Let g: N — N be a bounded function and let u: N — N, [— 1 if
l€{Sieraiq : (@ier € ({0......q = I\k)'} and 0 otherwise. Then

(g -nnp) * @l {-y)
m =

®u=li 0.
lgl® u Jim N

Proof. Let z € Z, then

(181) * (@)@) = D T (@ = DL (0 lglz = Ducx)

X€EZ
<max gl ZZ L) u(x)
=(max|g) [tx € [=N. N : u(x) # 0}

For prefixes of length N = ¢ we have |{x € [-N, N] : u(x) # 0}| = (g — 1)™, which
implies the result. Even if we consider subsequences, an upper bound for them is given
by

(@=D"+(@=1"" (q—l)’”:q(q—l)m_)o
qgn+ (-1t T g q ’

Remark 2.14. An interesting class of convolutions is given by {f = f: fe L}l}, where

f~(x) := f(—x), as every such convolution is positive definite. A function g: G — C is
called posititve definite, if for all N € N

Z cicjg(xi — xj) 2 0,

0<i,j<N
where x; € G,¢c; e Cforall 0 <i < N.

Corollary 2.15. Let u: N — {0, 1} be such that u®u exists. Fixaq>2,0<k<q-1
and define uy: N — (0,1} to be | — u(l), if | has a base q expansion with respect to
(1,...,q = I\{k})" and O otherwise. Finally set uy = u — u;. Then

U®U = u @ uy.

Proof. Notice that there is literally no difference in the proof of Lemma 2.13 for u;.
The remaining part follows from bilinearity

u®u =(uy + up) ® (g + uz)
=uy @ Uy + U @ Uy + U ® Uy + Uj, ® U
=y ®u,+0+0+0.

Lemma 2.16. Let k,l,c,d € Z. The following averaged convolution

Lizse ® Liz4a = lem&.D) Locaknz+(c—d) 3)

and especially exists.

Proof. The proof is essentially an application of the chinese remainder theorem. Let
z € Z, then

(izreLpnn)) * Mzealinn) @) =) Tizre@ = Dhpwa (@ = 0 Tzea(D Lm0

xeZ

=|(kZ+ (z-c)NUIZ-d)Nn(-N,N]+z)N[-N,N]).

The first part is solved by any x € Zs.t. x = z—c mod k, x = [-d mod [. The solution
space is lem(k,)Z+(z—c+d), if (z—c+d) =0 mod gcd(k, [) and 0@ otherwise. Another
way to see this is by the equality |(kZ + (z —¢)) N (IZ - d)| = |[(kZ + (z — c + d)) N IZ].

Now suppose (z —c +d) = 0 mod gcd(k, [), as otherwise the first part is empty.
With that

1 _
lim — (Lizsc Ly ny) * izeali-nag) (2)

N—>oo 2N
— i |dcm(k, DZ + (z — ¢ + d)) N ([-N,N] + 2) N [-N, N])|
N 2N
. |(em(k,hHZ) N [-N, N]| 1
= lim = .
N—oo 2N lcm(k, l)

Exercise 2.17. Include averaged convolution for two sequences into your program
and adapt it to heuristically verify Lemmas 2.13 and 2.16 and Corollary 2.15. Most
programming languages have already a predefined convolution that could be used. For
Corollary 2.15 and Lemma 2.16 it is considered enough to do so for the constant 1-
sequence and the ones given by Lemma 2.16. Judging from this exercise you may also
consider u = ;7 Lz, for ki, c; € Nfor all 0 < i < n and check if u ® u = uy ® uy, for
some k € N.

Processing of the Exercise 2.17. In the exercise above we had to include the average
convolution and verify Lemmas 2.13 and 2.16 and Corollary 2.15. To verify Lemma 2.13
we implemented 21. This needs the functions 22, 23, 26 and 24 explained in the at-
tachment and returns the maximum value of the average convolution from u and g to
show that this converges. In 4 below we calculated our results for ¢ = 4 and k = 2. We
used g = 1 as the worst case of a bounded function.

In the listing 4 you can see that the average convolution converges to zero for length
x — oo. Here the length was extended in increments of four to have a compareable
value to the estimation used in the proof of Lemma 2.13. It occurs to be exact the

_\m
expected value (%) -1

Listing 4: Verify Lemma 2.13

>> Lemma213Test (42,2 ,4)
ans = 0.2813

>> Lemma213Test (4°3,2,4)
ans = 0.2109

>> Lemma213Test (44,2 ,4)
ans = 0.1582

>> Lemma213Test (45,2 ,4)
ans = 0.1187

>> Lemma213Test (46,2 ,4)
ans = 0.0890

>> Lemma213Test (47,2 ,4)
ans = 0.0667

>> Lemma213Test (48,2 ,4)
ans = 0.0501

>> Lemma213Test (49,2 ,4)
ans = 0.0375

>> Lemma213Test (4°10,2,4)
ans = 0.0282

>> Lemma213Test(4°11,2,4)
ans = 0.0211

10

>> Lemma213Test (4°12,2,4)
ans = 0.0158

In Corollary 2.15 we had to show, that u ® u = u; ® ;. Therefore we used listing
27. In this function we also need listing 28, which realize for a given u the image of
uy, with listing 29 you can expand the image values of a function from N to Z and with
listing 30 you can mirror the image values. The last part in this function is the average
convolution of all functions of u with listing 31 and then compare both sides. As result
we calculated the sum of the differences, the elementwise maximum difference as well
as the average difference.

Listing 5: Verify Corollary 2.15

>> [sum max avg|=Corollar215Test (4"3,Generator3(4°3,"'1"

2 2]),3,4)

sum = 1.2891 max = 0.0625 avg = 0.0201

>> [sum max avg]=Corollar215Test (4"3,Generator3(4°4,"'1"
2 2]),3.,4)

sum = 1.2129 max = 0.0586 avg = 0.0190

>> [sum max avg]=Corollar215Test (4°3,Generator3(4°5,"'1"
2 2]),3,4)

sum = 0.9624 max = 0.0483 avg = 0.0150

>> [sum max avg]=Corollar215Test (4°3,Generator3(4°6,"'1"
2 2]),3,4)

sum = 0.7269 max = 0.0369 avg = 0.0114

>> [sum max avg|=Corollar215Test (4"3,Generator3(4°7,"'1"
(2 2]),3,4)

sum = 0.5477 max = 0.0277 avg = 0.0086

>> [sum max avg|=Corollar215Test (4”3, Generator3 (4°8,"'1"
2 2]),3,4)

sum = 0.4109 max = 0.0208 avg = 0.0064

>> [sum max avg]=Corollar215Test (4°3,Generator3(4°9,"'1"
2 2]),3,4)

sum = 0.3074 max = 0.0157 avg = 0.0048

>> [sum max avg]=Corollar215Test (4" 3,Generator3(4°10,"'1"
2 2]),3,4)

sum = 0.2306 max = 0.0118 avg = 0.0036

Here we build a function with the generator class, which length also was extended
in increments of four. We started with 1 and the map 7?pr1y. The meaning of k = 3
and g = 4 is the same we already mentioned in listing 4.

In Lemma 2.16 we want to show the equation (3). As already shown in the listing
before we want to consider the difference between both convolutions, this is done by
listing 32. In this function we have six input parameters, the first parameter represents

11

the length of the functions and the second is the length on that the difference between
both functions shall be evaluated. With all other parameters we build the one functions
1z+c and 17,4 from Lemma 2.16, which you can see in listing 33. As already in
the Corollary 2.15 before we use listing 31 as average convolution on Z and with the
functions 147,53 and 1ez+4 wWe get

Listing 6: Verify Lemma 2.16

>> [sum max avg]=Lemma216Test(100,100,4,3,6,4)
sum = 0.5483 max = 0.0233 avg = 0.0055

>> [sum max avg]=Lemma216Test(1000,100,4,3,6,4)

sum = 0.0548 max = 0.0023 avg = 5.4833e-04
>> [sum max avg|=Lemma216Test(10000,100,4,3,6,4)
sum = 0.0055 max = 2.3333e-04

avg = 5.4833e-05

>> [sum max avg|=Lemma216Test(100000,100,4,3,6,4)
sum = 5.4833e—-04 max = 2.3333e-05

avg = 5.4833e-06

>> [sum max avg]=Lemma216Test(1000000,100,4,3,6,4)
sum = 5.4833e-05 max = 2.3333e-06
avg = 5.4833e—07

Definition 2.18. Define A, := ¢" 'k + {Z;’;OZ aiq' : a; €{0,...,q — 1}\{k}} to be the set
of ¢"-periodic points . |4, = (g — 1)"!

Further set A, = {x € A, : u(x) = 1} and define A, respectively. Hence A, =
An,l W An,()

With that we can define

N
Up N = Z Z Tpzix = wen-1 + § T vz
n=1 x€A, XEAN,1

Remark 2.19. Notice that u;y — u; pointwise for N — oco. We will now check
convergence for the convolution.

Lemma 2.20.
Uy ® Uy — U DUl = U DU,
uniformly in N.

Proof. Pointwise convergence is already clear. To check uniform convergence, we first
obtain for any x € Ay

N N

U ® 1;;2+x = Z Z (]lq"Zera ® ﬂ;;zjx) = Z Z Nz

n=1 x,€A, 1 n=1 x,€A,

12

The next step will be to calculate an upper bound for this function. As by definition
of A, the family of sets (¢"Z + x,)x,ea, is disjoint, there can be at most N non-zero-
evaluations of characteristic function at the same time. Another way to describe this
isbymax{|{xu €Z:I <n<N,x,€A,:xs=xp+x mod g"}| : 0 < xp < g" - 1} <
N,as A, = Zg foralln e N.

If we consider every x € Ay, remember that [A,| = (g — 1)", this gives an upper
bound by

.| @ iz =[|uk,N1|+ > nqNZ+x]@[|u;,7v‘l|+ > L,NZH]

XEANI XEAN

=lurn-1] ® g n_1] + e n-1 @ Z Tyvzix

XEAN,1
+ Z Lz ® uen-1 + Z Lz ® Z T vziy
XEAN,I XEAN | XEAN,I
— -N -N -N
<lugn-1] ® lugn=1] + N Z q +NZq +Zq
XEANI XEAN XEAN

_ —1\V
<11 ® vl + 2N + 1)(%) .

Hence the convergence of uy -1 ® ugy—1 — Uy ® u; is uniformly. The last equality
follows from Corollary 2.15 O

Exercise 2.21. Each o € 2 is primitive with the property o-(a)y = a for all a € {0, 1}
and therefore u := lim,_,,, 0"(0) is well defined. Check, that this is indeed the case
by showing that 0~ !(a) is a prefix of o”(a) for all n € N. Make your progam able to
handle u; y ® iy and heuristically verify that for a substitution in 2 with two different
columns, hence ki, ky and k; # kp, of only one letter the limits are the same. Do not
forget trivial checks like the constant one or constant zero sequences.

Processing of the Exercise 2.21.

Lemma 2.22. For each o € 2 with the properties of 2.21 o"~(a) is a prefix of o (a).

Proof. This prove is done by induction. But first we want to remark, that

o(a) = c(@)oo (@)1 . .. C(@Do)-1

o(a) = ad(a). @
IA: For n = 2 we have o' (a) = ad(a) and this is a prefix of (4).
IV: 0" !(a) is a prefix of 0"(a), so we have o*(a) = o ()" !(a).
IS:
o"*l(a) = (0" (a))
= 0" @ (@)
= o (a)d"(a).
[m}

13

To verify Exercise 2.21 we show that for a given map u wy, ® wy, = up, ® uy,
for ki,ka, ki # kp two columns of the map u. To prove this for a given map u we
implemented 34. As examples we calculated the stated mappings and analised the
boxed columns.

om0 0 110[0] 225r.,0): 0 1[00[1]0 0
() 1 0/0|0] 2orru(): 10/0[0[1/00
20%7rr(©0): 0100/ 1[00/1[000100100
2021t 1000/1[00/1[000100100

Listing 7: Exercise 2.21 7217y

Comparing the convolutions on 64 elements.

>> [sum max avg|=Exercise221Test (Generator3(4°4,'0"' ,[3])

,4°3.,2.3.4)

sum = 0.1953 max = 0.0117 avg = 0.0031

>> [sum max avg|=Exercise221Test (Generator3(4°5,'0"' ,[3])
,4°3.,2.3.4)

sum = 0.1602 max = 0.0083 avg = 0.0025

>> [sum max avg|]=Exercise221Test (Generator3(4°6,'0"' ,[3])
473,2,3.4)

sum = 0.1235 max = 0.0065 avg = 0.0019

>> [sum max avg|]=Exercise221Test (Generator3(4°7,'0"' ,[3])
4°3.,2.3.4)

sum = 0.0935 max = 0.0049 avg = 0.0015

>> [sum max avg|=Exercise221Test (Generator3(4°8,'0"' ,[3])
,4°3.,2.3.4)

sum = 0.0703 max = 0.0037 avg = 0.0011

>> [sum max avg|=Exercise221Test (Generator3(4°9,'0"' ,[3])
,4°3.,2.3.4)

sum = 0.0528 max = 0.0028 avg = 8.2517e-04

>> [sum max avg|=Exercise221Test (Generator3(4°10,'0" ,[3])
4°3.,2.3.4)

sum = 0.0396 max = 0.0021 avg = 6.1908e—-04

Comparing the convolutions on 256 elements.
>> [sum max avg|=Exercise221Test (Generator3(4°4,'0"' ,[3])

,474,2 .3 ,4)
sum = 0.7266 max = 0.0156 avg = 0.0028

14

>> [sum max avg|=Exercise221Test (Generator3(4°5,'0"' ,[3])

474,23 ,4)

sum = 0.6934 max = 0.0122 avg = 0.0027

>> [sum max avg|=Exercise221Test (Generator3(4°6,'0"' ,[3])
,474,2.3.4)

sum = 0.5684 max = 0.0092 avg = 0.0022

>> [sum max avg|=Exercise221Test(Generator3(4°7,'0"' ,[3])
474.,2.3.4)

sum = 0.4384 max = 0.0069 avg = 0.0017

>> [sum max avg|]=Exercise221Test (Generator3(4°8,'0"' ,[3])
4°4,2.3.4)

sum = 0.3318 max = 0.0052 avg = 0.0013

>> [sum max avg|=Exercise221Test (Generator3(4°9,'0"' ,[3])
474,23 ,4)

sum = 0.2496 max = 0.0039 avg = 9.7498e-04

>> [sum max avg|=Exercise221Test (Generator3(4°10,'0" ,[3])
,474,2.3.4)

sum = 0.1874 max = 0.0030 avg = 7.3197e-04

Listing 8: Exercise 2.21 t2p7Try

Comparing the convolutions on 49 elements.

>> [sum max avg]=Exercise221Test (Generator3(7°3,'0"' ,[2
2]),7°2,2,4.,7)

sum = 0.5685 max = 0.0627 avg = 0.0116

>> [sum max avg|=Exercise221Test(Generator3(7°4,'0"' ,[2
2]),7°2,2,4.,7)

sum = 0.5085 max = 0.0552 avg = 0.0104

>> [sum max avg|=Exercise221Test (Generator3(7°5,'0"' ,[2
2]),772,2,4.7)
sum = 0.4389 max = 0.0475 avg = 0.0090

>> [sum max avg|=Exercise221Test(Generator3(7°6,'0"' ,[2
2]),7°2,2,4.,7)

sum = 0.3767 max = 0.0408 avg = 0.0077

>> [sum max avg]=Exercise221Test (Generator3(7°7,'0"' ,[2
2]),7°2,2,4.,7)

sum = 0.3229 max = 0.0349 avg = 0.0066

Comparing the convolutions on 343 elements.

15

>> [sum max avg|=Exercise221Test (Generator3(7°3,'0"' ,[2
2]) ,7°3,3,5,7)

sum = 3.5000 max = 0.0627 avg = 0.0102

>> [sum max avg|=Exercise221Test(Generator3(7°4,'0"' ,[2
2]),7°3,3,5,7)

sum = 4.0556 max = 0.0575 avg = 0.0118

>> [sum max avg|=Exercise221Test (Generator3(7°5,'0"' ,[2
2]),773,3,5,7)

sum = 3.6270 max = 0.0510 avg = 0.0106

>> [sum max avg|=Exercise221Test (Generator3(7°6,'0"' ,[2
2]),773,3,5,7)

sum = 3.1304 max = 0.0442 avg = 0.0091

>> [sum max avg|=Exercise221Test (Generator3(7°7,'0"' ,[2
2]) ,7°3,3,5,7)

sum = 2.6863 max = 0.0379 avg = 0.0078

Listing 9: Exercise 2.21 720°ttry

Comparing the convolutions on 169 elements.

>> [sum max avg|=Exercise221Test(Generator3(17°2,'0" ,[2
21) ,17°2,4,7,17)

sum = 0.0588 max = 0.0017 avg = 2.0354e-04

>> [sum max avg]=Exercise221Test (Generator3(17°3,'0"' ,[2
2]) ,17°2,4,7,17)

sum = 0.0501 max = 0.0017 avg = 1.7326e-04

>> [sum max avg|=Exercise221Test(Generator3(17°4,'0"' ,[2
2]) ,17°2,4,7,17)

sum = 0.0506 max = 0.0016 avg = 1.7525e-04

>> [sum max avg|=Exercise221Test (Generator3(17°5,'0" ,[2
2]) ,17°2,4,7,17)

sum = 0.0479 max = 0.0015 avg = 1.6565e—-04

Comparing the convolutions on 2197 elements.

>> [sum max avg|=Exercise221Test (Generator3(17°3,'0"' ,[2
2]),17°3,4,7,17)

sum = 2.2595 max = 0.0026 avg = 4.5991e-04

>> [sum max avg|=Exercise221Test (Generator3(17°4,'0" ,[2

2]),17°3,4,7,17)
sum = 3.0327 max = 0.0031 avg = 6.1729e-04

16

>> [sum max avg|=Exercise221Test(Generator3(17°5,'0"' ,[2 2
2]) ,17°3,4,7,17)
sum = 2.9365 max = 0.0031 avg = 5.9770e-04

2.2 Analysis of 2

The previous analysis just gives a very rough description of 2, which would also hold
for a much more general class of substitutions. Therefore the first aim is to look at finite
compositions of o~ € 2. For example one can take two substitutions 771y, ToTTM and
see in which way trqtotrTM differs from 7prryrrTM. Tough they are not in 2 it
might also be fruitful to consider Ty and prryv, especially the first substitution as it
partakes in every element of 2.

Exercise 2.23. Can one check heuristically that for periodic applications of substitu-
tions generated from 2 Remark 2.11 does not apply. Namely that for such substitutions
only one letter colums generate periodicities.

Processing of the Exercise 2.23. To verify this we implemented the function 37 to gen-
erate all possible Elements of 2 so the partial sum of (a,),en adds up to n. Furthermore
we implemented the function 38 that checks if a given map generates new periods thats
aren’t given by Lemma 2.7 and used this in 36 where we investigated each possible
concatenation of elements of 2 on periodicites. With this we found out about some
more periodicities that we classified in Corollary 2.8. These could be seen as the first
counterexample of the given task but as those periodicities can be seen as easy as the
ones of Lemma 2.7 we decided to also implement these in 38 as known periodicities
that are no longer of interest. Ignoring these periodicities we actually found counterex-
amples that met our interests. One of these is given by the concatenation

2ptrm o Ty (0) 1 0100100100010001001000100100
w2ptrm o (1) 1000100010010001001000100100

This map with a constant length g = 28 generates for uy 2, the ultimate periodicity 49.

Listing 10: Test if u»; has period 49

periodic (Generator3(100000000,'1" ,[3 0;2 2]),22,49)

ans = 1

The responsible blocks of columns are given by choosing p = 4 and & € {0, 2} in Corol-
lary 2.8(Namely the columns at position 7,14,21 and 28 for & = 0 as well as 5,12,19
and 26 for & = 2) as well as the columns at position 15,16,22,23. Therefore this marks
the first map from 2 we found generating a periodicity generated by different blocks
of columns that assort well.

Listing 11: Visualisation of the periodicity of uz; 22

'0100100100010001001000100100"
*1000100010010001001000100100"

17

Figure 1: Fourier transformation of a fixpoint of Ty
Visualisation of the periodicies of [3]

200 — :
180 F 1
160 F 1
140 F 1
120 F 1
100 F 1
80 1
60 1
40+ 1

20 7

0 Lol | \JI\‘ |\l|\ i Ll
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

LH L " \um‘

'0100100100010001001000100100 "
*0100100100010001001000100100'"
*1000100010010001001000100100"
*0100100100010001001000100100'
'0100100100010001001000100100"
'1000100010010001001000100100"
*0100100100010001001000100100'"
*0100100100010001001000100100"
0100100100010001001000100100'
*1000100010010001001000100100 "
'0100100100010001001000100100"
'0100100100010001001000100100"

Exercise 2.24. Play around with 2 and formulate at least one conjecture which is
heuristically supported by your program or made into a theorem by being proven.

Processing of the Exercise 2.24. To conclude this worksheet we visualized the fourier

transform Ry(f) = % |ZnsN u,e*int |2(See [3] Chapter 4.3) of fixpoints of the maps
2 7rm, T20Try and T2p> 1Ty We already analized in Exercise 2.21. These can be seen
in 1, 2 and 3. This gives an indicator about all periodicies of u as there will be peaks
for every period p at positions %, 0 < k < p varying in size depending on the size of
the period p.

Given this we also used Ry(?) to visualize our approximation of u ® u and u; ® uy
in 4, 5 and 6. Here u ® u is represented by the orange function whilst u; ® 1y is given

by the blue function.

18

Figure 2: Fourier transformation of a fixpoint of 72p77y

o Visualisation of the periodicies of [2 2]

100 7

50 [b

ol 1 1] \|JI.‘\ 'I "M|‘ Lowl 1 &

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 3: Fourier transformation of a fixpoint of 720777y
Visualisation of the periodicies of [2 2 2]

160 T

140 7

120 7

100 7

80 7

60 [b

40 1

oL nllleil LLA_ALJLLAJJL_AM lljxll‘u P
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

19

Figure 4: Autokorrelation of u ® % and u;, ® iy, length=2 * 43

Visualisation of the periodicies of [2 2]
0012 T T T T T T T

0.01 b

0.008 [b

0.006 | b

0.004 | b

0.002 | b

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 5: Autokorrelation of u @ % and uy ® iy, length=2 x 4*
Visualisation of the periodicies of [2 2]

0.05
0.045 b
0.04 b
0.035 b
0.03 b
0.025 b
0.02 b
0.015 b
0.01 b

0.005 b

A I A SN o

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

20

Figure 6: Autokorrelation of u ® % and u;, ® i, length=2 * 4°

02 Visualisation of the periodicies of [2 2]

0.1 4

0.08 1

0.06 [4

0.04 1

0.02 [4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

References

[1] M. Baake and U. Grimm. Aperiodic Order. Cambridge University Press. CPI
Group Ltd, Croydon, CRO 4YY, 2013.

[2] N. Pytheas Fogg. Substitutions in Dynamics, Arithmetics and Combinatorics. Lec-
ture Notes in Mathematics. Springer-Verlag Berlin Heidelberg, 2002.

[3] M. Queftélec. Substitution Dynamical Systems - Spectral Analysis. Lecture Notes
in Mathematics. Springer-Verlag Berlin Heidelberg, 2010.

21

Attachment

Listing 12: 7

% Realises the map tau.

function s = tau2(x)
s=strrep(x,'1','10");
end

Listing 13: p

% Realises the map rho.

function s = rho2(x)
s=strrep(x,'0','01");
end

Listing 14: 0

% Realises the map theta .
function s = theta2(x)
s=strrep(x,'0','a');
s=strrep(s,'1','0");
s=strrep(s,'a','1');

end

Listing 15: 17y

% Realises the map ttm.

function s = ttm2(x)
s=strrep(x,'0','a');
s=strrep(s,'1','b');
s=strrep(s,'a','01"');
s=strrep(s,'b',"10");
end

Listing 16: Generate prefix of a given mapping of 2

Y%%Generator3 (n,x,A)

%%Generates the prefix of an element of \mathscr{Q}.

Y@Qreturn the prefix of a given element from \mathscr{Q}
with the length n.

%an the length of the requested prefix.

%ax the inserted string to generate the prefix.

%A the finite sequel (a_n) that represent the element of
\mathscr{Q}.

function prefix = Generator3(n,x,A)
B=size (A);
if ischar(x) = true
throw (MException('Component: InputError','Incorrect

input format x char needed'))
end

22

14

15
16

17
18
19

21

22
23

24
25
26
27
28
29
30

31

(O8]

(O QN

oo

9
10

12
13
14

15
16

if isempty(x)
throw (MException('Component: InputError', ' Incorrect
input format x is empty'))

end
if isfloat(n) = true
throw (MException (' Component:InputError',"'Incorrect
input format n float needed'))
end
if isfloat (A) = true
throw (MException('Component: InputError','Incorrect
input format A matrix of float needed'))
end
for i=1:B(1)
if A(i,1)< 2 || A(i,find (A(i,:),1,'last"'))<2
throw (MException (' Component: LanguageError"' '
Incorrect input. first or last a_i not 2 or
bigger "))
end
end
pref=x;

while length (pref)<n
pref=omega2 (pref ;A);

end

prefix=pref (1:n);

end

Listing 17: Generate prefix of a random mapping of 2

Y%Generator2 (n,x,amount , long ,max)

%%Generates the prefix of an random element of \mathscr{Q
}.

Y@return the prefix of a given element from \mathscr{Q}
with the length n.

%an the length of the requested prefix.

%@ax the inserted string to generate the prefix.

Y%@amount the amount of random elements of \mathscr{Q}
that shall be

Y%concatenated .

%@long the maximal possible length of the sequence (a_n)
for each mapping.

%Amax an upper bound for each element of (a.n).

%See also func(amount,long ,max). It is advised to choose
each of these

%entries \leq 5 as the calculation time is of exponential
growth

%and will take a while above these number.

function prefix =Generator2(n,x,amount,long ,max)

A=Func (amount , long ,max) ;

B=size (A);

if ischar(x) = true

23

throw (MException('Component:InputError','Incorrect
input format x char needed'))

end
if isfloat(n) = true
throw (MException('Component: InputError','Incorrect
input format n float needed'))
end
if isfloat (amount)™= true || isfloat(long) ™= true ||
isfloat (max) ™= true
throw (MException('Component: InputError','Incorrect
input format a,b,c integer needed'))
end

for i=1:B(1)
if A(i,1)< 2 || A(i,find (A(i,:),1,'last"'))<2
throw (MException (' Component: LanguageError"' '
Incorrect input. first or last a_i not 2 or
bigger'))
end
end
pref=x;
while length (pref)<n
pref=omega2 (pref ,A);
end
prefix=pref (1:n);
end

Listing 18: Realization of the Elements of 2

Yomega (x,A)
%%Realizes the map of Q given by A upon x.
function o = omega(x,A)

B=size (A);
0=X;
for j=1:B(1)
o=ttm2(o0);
if (=1)"length(A(j,:))==1
for i=1:(A(j,end)-1)
o=rho2 (o) ;
end

elseif (—1)"length(A(j,:))==-1
for i=1:(A(j,end)-1)
o=tau2 (o) ;
end
end
for i=1:(length (A(j,:))-
if (-1)" (length (A(] ,
for k=1:A(j,len
o=rho2(0);

1)
))=i)==
gth (A(]))—i)

end
elseif (-1)"(length(A(j,:))-1)==-1

24

for k=1:A(j,length(A(j,:))-1)
o=tau2(o);
end
end

end
end
end

Listing 19: Generates a random matrix to represent a map of 2

Y%%Func(amount ,length ,max)
Y%%Generates a random matrix to represent a family of
mappings of
%% \mathscr{Q} that shall be concatenated
%areturn matrix of the size (amount x length)
% @amount the amount of rows the matrix shall have.
% @length the amount of colums the matrix shall have.
% @max the maximal possible value for each entry of the
matrix A.
function [A | = Func(amount,length ,max)
A=zeros (amount,length);
for i=1:amount
A(i,1)=randi([2,max]) ;
r=randi ([1,length]);
for j=2:r-1
A(i,j)=randi(max);

end
if r'=1
A(i,r)=randi([2,max]);
end
end
end

Listing 20: periodicity test

%Qa ,b the block you want to consider of the given

%function

function [block] = periodicity (a,b)

blockarray=str2num (replace (Generator3 (104,'0" ,[2]),"'"," '
));

block=blockarray (a:b);

end

Listing 21: Testfunction for Lemma 2.13

Y%Lemma212Test (n,k, q)
77A function used to verify Lemma 2.13. The function g is
represented by the

25

(O8]

(O8]

6

9

11
12

~
D

Yoworst case the constant one—function.

Y@return returns the highest value of the convolution of
u

%a@n the towards infinity diverging length of the
convolution.

%Qq the base q to realise the q expansion.

%Ak the element O\leq k\leq q-1 that is not allowed in
the base ¢

Y%expansion .

function [out] = Lemma213Test(n,k,q)

out=max (AConvAufN (n, DarstUAufN (n,k,q) ,one(n)));

end

Listing 22: Average convolution on N

Y%A ConvAufN (n, fix1 , fix2)

%% Calculates the average convolution of two given
functions.

J@return returns the average colvolution values of two
given functions of

%the size 2*n.

%@n the towards infinity diverging length of the

convolution.
Y@fix1 @Qfix2 the maps of the two functions that shall be
convoluted.
function [¢] = AConvAufN(n, fix1 ,fix2)
fixll=replace (fix1l (1:n),""," ');
fix2l=replace (fix2 (1:n),'"'," ');

c=1/(2#n) .*xconv (str2num (fix11) ,str2num (fix21));
end

Listing 23: Representation of map u from Lemma 2.13

Y%DarstUAufN (n,k ,q)

%Realization of the map u from Lemma 2.13 that checks a
natural number

%of its q base expansion without k.

Y@return returns tha mapping of u of the first n natural
numbers .

%An the amount of consecutive natural numbers that is of
interest.

%(counting 0 as first natural number)

%Qq the base q to realise the q expansion.

%Ak the element O\leq k\leq g-1 that is not allowed in
the base ¢

Y%expansion .

function [out | =DarstUAufN(n,k,q)

out=one (n);

A=QadicBaseExpansion(n,q);

for i=1l:size(A,1)

26

for j=1:find (A(i,:) ,1, " last")
if A(i,j)=k
out(i)="'0";
end
end
end
end
Listing 24: Realisation of the constant one-function
Y%one (n)

Y%%Representation of the constant one—function.
%an length of the function.

function [out] = one(n)
out=replace (num2str (ones ([1 n]))," *,"'"');
end

Listing 25: Realisation of the constant zero-function

Yhozero (n)
Y%%Representation of the constant zero—function.
%an length of the function.

function [out | = zero(n)
out=replace (num2str (zeros ([1 n]))," ','"');
end

Listing 26: Illustration of quadic base

%%QadicBaseExpansion (x,q)
Y%%Calculates the gq—adic base expansion of the first x
consecutive mnatural
Y¥%mumbers .
%@n the amount of consecutive natural numbers that is of
interest .
%(counting 0 as first natural number)
%Qq the base q to realise the q expansion.
function [A,m] = QadicBaseExpansion(n,q)
m=0;
x=0;
while q m<n
x=x+(q—-1)*q "m;
m=m+1;
end
if (x+2)>n
m=m—1;
end
A=zeros (n,m+1);
for i=1:n
s=i—1;
for j=1lmtl1

27

A(i -])=Ffloor (s/q” (mH1=j))
s=s—floor (s/q" (mtl-j))*q (m+l-j);
end
end
end

Listing 27: Testfunction for corollar 2.15

%%Corollar215Test (int n(>0),char Array fixu(length (fixu)
=n) ,int

%k (0<=k<=q—-1) ,int q(>=2))

%A function used to verify corollar 2.15

%Qreturn returns (in this order) the sum, max and average
difference between

%the convolutions.

%First parameter n represents the length of the functions
that

%shall be compared.

%Second parameter realises the image of a given map u.

%Parameter k and q are needed to create the function u_\
hat{k}.

function [outl,out2, out3] = Corollar215Test (n, fixu ,k,q)

fixucaret=DarstU_kCaret (fixu ,k,q);

fixu=FuncExpandToZ (fixu) ;

fixucaret=FuncExpandToZ (fixucaret);

fixuk=replace (num2str (fixu—fixucaret),' ','"');

fixusim=ComplexMirror (fixu) ;

fixuksim=ComplexMirror (fixuk) ;

convfixu=AConvAufZ (round (length (fixu) /2),fixu ,round(
length (fixu)/2) ,fixusim ,round(length (fixu)/2));

convfixuk=AConvAufZ (round (length (fixu) /2) ,fixuk ,round (
length (fixu) /2),fixuksim ,round(length (fixu)/2));

outl=sum(abs(convfixu(length (fixu)—floor (n/2):length(fixu
)+round (n/2))-convfixuk (length (fixu)—floor (n/2):length
(fixu)4round(n/2))));

out2=max(abs (convfixu (length (fixu)—floor (n/2):length (fixu
)+round (n/2))—convfixuk (length (fixu)-floor (n/2):length
(fixu)4round(n/2))));

out3=outl /n;

end

Listing 28: Realization of u;,

%% DarstU_kCaret (fixu ,k,q)

Y%%Realizes the map u_\hat{k} for a given map u.

Y@fixu the mapping of the map u.

%Qq the base q to realise the q expansion.

%Qak the element 0\leq k\leq gq-1 that is not allowed in
the base ¢

Y%expansion .

28

(o2¢)

10

11
12
13
14

15

\)

AW

(9}

(o clEN]

(W)

~N N DB W

W

6

function [out] = DarstU_kCaret(fixu,k,q)
mapu_k=DarstUAufN (length (fixu) ,k,q);
for i=1:length (mapu_k)

if mapuk(i)= '1"

mapu k(i)= fixu(i);

end
end
out=mapu_k;
end

Listing 29: Expanding a function to Z

%FuncExpandToZ (funcl)

Y7%Symmetrically expands a function defined on N to Z
mapping all negativ

%/mumbers on 0.

Y%@funcl the mapping of a map that shall be expanded.

Y@return returns the expanded function.

function [out] = FuncExpandToZ(funcl)

out=zero (length (funcl)-1);

out=strcat (out, funcl);

end

Listing 30: complexe mirror a function

%% ComplexeMirror (funcl)

%/ Maps each entry at position x onto —conj(x).As we only
observe real

Y%integers this function only flips a given map.

Y%@Qreturn returns \overset{\sim}{funcl}

Y@funcl the map to be complexe mirrored.

function [out | = ComplexMirror(funcl)
out=fliplr (funcl);
end

Listing 31: Average convolution on Z

%AConvAufZ (n, fix1 ,startl ,fix2 ,start2)

%% Calculates the average convolution of two given
functions.

Y@return returns the average colvolution values of two
given functions of

%the size 4x*n.

%@n the towards infinity diverging length of the
convolution .

Y%afix1 @fix2 the maps of the two functions that shall be
convoluted .

Y%@startl @start2 the position of the map of 0 in each of
the given

%functions .

29

function [¢ | = AConvAufZ(n, fixl ,6startl,fix2 start2)
while startl-n<l || startl4n>length (fix1)
fixl=strcat ('0',fix1,'0"');
startl=startl+1;
end
while start2-n<l || start24n>length (fix2)
fix2=strcat ('0',fix2,'0");
start2=start241;
end
fix11=fix1 (startl -n:startl4n);
fix21=fix2 (start2 -n:start24n);
fix12=replace (fix11,'"' ' ');
fix22=replace (fix21 ,'"' " ');
c=1/(2*n) .*xconv(str2num (fix12) ,str2num (fix22));

end

Listing 32: Testfunction to verify Lemma 2.16

Y%lemma216Test (int n(>0),int m(>0),int k(>0),int c,intl
(>0),int d)

%7A function used to verify lemma 2.16

%AQreturn return (in this order) the sum, max and average

%of elementwise differences between the convoluted

%functions and the expected function.

%an First parameter n represents the length of the
functions that

%shall be constructed.It is known as the faktor N
diverging towards

%infinity to realise the averaged convolution.

%@m Second parameter m is the length on that the
difference between the two

%functions of lemma 2.16 shall be evaluated.

%Since average convolution is a limit value process it is
recommended to

%choose m much smaller than n.

%@k @c @l @d The parameters k,c,l,d represent the needed
parameters for the

%given functions in lemma 2.16.

function [outl, out2,out3] = Lemma2l6Test(n,m,k,c,1,d)

[kcind , kcindstart]=Builder (2xn,k,c);

[1dind ,ldindstart]=Builder (2xn,1,d);

[kledind , kledindstart]=Builder (2*n,ged (k,1) ,c=d);

kledind=1/lem (k, 1) .*str2num (replace (kledind ,'',' '));

con=AConvAufZ (n, kcind , kcindstart , ComplexMirror (ldind),
ldindstart);

outl=sum(abs (kledind (kledindstart —floor (m/2): kledindstart
+round (m/2))—con(floor (length (con) /2)-floor (m/2): floor
(length (con) /2)4round (m/2))));

out2=max(abs(klcdind (klcdindstart —floor (m/2): klcdindstart

30

+round (m/2))—con(floor (length (con) /2)—floor (m/2): floor
(length (con)/2)+round (m/2))));

out3=outl /m;

end

Listing 33: building a one-function on given modulus and remainder

%%Builder (n,modulo,rest)
%%Builds a one—functions defined on moduloxZ+rest
%an the length of the function.It will be build
symmetrically around the 0
%giving negative numbers the priority.
%@modulo the modulus of the function.
Y@rest the remainder of the function.
function [out,start] = Builder(n,modulo, rest)
if rest<=0
rest=rest+floor (abs(rest)/modulo)*modulot+modulo;
else
rest=rest —floor (rest /modulo)*modulo;
end
a=zero (modulo) ;
a(rest+1)="1";
start=1;
out="'";
while length (out)<n+2
out=strcat (a,out,a);
start=start-+modulo;
end
if mod(n,2)==0
out=out (start-n/2:start+n/2-1);
else
out=out (start —floor (n/2):start+floor (n/2));
end
start=n/2+1;
end

Listing 34: Testfunction to check the difference between the convolution of two colums

Y%%Exercise221Test (fixu ,m, k1l ,k2,q)

YA function to test the idea of 2.21

Y@return returns the sum of the elementwise difference of
the

%two observed convolutions.

%afixu the map of u.

%@m Second parameter m is the length on that the
difference between the two

%convolutions shall be evaluated.

%Since average convolution is a limit value process it is
recommended to

%choose m much smaller than length (fixu).

31

%Qq the constant length of the given map u.

%kl @k2 the position of the columns.

function [outl,out2, out3] = Exercise221Test (fixu ,m, k1,
k2,q)

U _kllocal=FuncExpandToZ (U_kAufNGivenU (fixu ,kl,q))

U_k2local=FuncExpandToZ (U_kAufNGivenU (fixu ,k2,q))

a=AConvAufZ (length (fixu),U_kllocal ,length (fixu),
ComplexMirror (U_k1llocal) ,length (fixu));

b=AConvAufZ (length (fixu),U_k2local ,length (fixu),
ComplexMirror (U_k2local) ,length (fixu));

out=a(round (length(a)/2)-floor (m/2):round(length(a)/2)+
round (m/2))-b(round (length (b)/2)-floor (m/2) : round (
length (b) /2)+round(m/2));

outl=sum(abs(out));

out2=max(abs(out));

out3=outl /m;

end

Y
Y

Listing 35: A function that calculates uy,

%7%U _kAufNGivenU (fixu ,k,q)

%7A function that calculates u_k given a k and the map u.
Y@fixu the map of u.

%aq the base q needed to calculate the map of u_kCaret.
%@k the coefficent not allowed in the base expansion in

u_kCaret .
function [out] = U_kAufNGivenU(fixu ,k,q)
out=replace (num2str (fixu —DarstU_kCaret (fixu ,k,q)),' ',"'")

i

end

Listing 36: Testfunction to check if the periodic application generates periodicity

Y% Exercise223Test (nl ,n2 ,m,x)

Y%For a given integer n>=2 and a string x (for example
‘0" or '1')

Y%hcalculates if periodic applications (for now only
alternation of two elements)

%of elements of Q generate periodicies.

%@anl the length on wich the periodicy shall be tested.

%@n2 the sum that the elements of the finite sequence (
a_n) maximally

%add up to.(This is essential for the calculation time)
minimum is 2.

%adm users definition of periodicity giving the amount of
consecutive

%identical outputs needed to be called periodic.

%ax the string to start with.

function Exercise223Test(nl,n2,m,x)

32

pause on;

A=cell (1,n2-1);

for i=2:n2
A(i-1)={PossibilityGenerator (i) };

end
for k=2:n2
B=cell2mat (A(k-1));
Bl=size (B);
for i=1:B1(1)
for j=2:n2
Bl=size (B);
C=cell2mat (A(j-1));
Cl=size (C);
if B1(2)<C1(2)
B=cat (2,B, zeros (B1(1) ,C1(2)-B1(2)));
else
C=cat (2,C, zeros (C1(1) ,B1(2)-C1(2)));
end
Cl=size (C);
for h=1:C1(1)
B2=num?2str (B(i,:));
B3=[];
for 1=1:C1(2)
B3=strcat (B3,B2(3%1-2));
end
C2=num?2str (C(h,:));
C3=[];
for 1=1:C1(2)
C3=strcat (C3,C2(3%1-2));
end
D=PeriodicityCheck (nl ,m,x,[B(i,:);C(h,:)
DE
if isempty (D)
fprintf (' The Elements %s and %s
generate no new periodicies\n',B3,
C3)
else
fprintf ('The Elements %s and %s
generate the new periodicies\n' , B3
703)
%disp (D)
end
end
end
end
end
end

33

Listing 37: A function to generate all possible elements of 2 that fit inputs

%%PossibilityGenerator (n, fields)

%%Generates all possible elements of \mathscr{Q} given an
input n

Y@return returns a matrix containing each possible vector
of real positiv

%integers that elements add up to n. In addition the
first and last element

%of each vector are limited to be 2 or bigger.

%an the sum that the elements of the finite sequence (a.n
) add up to.

%Qfields (optional) optional parameter that limits the
maximum length of each

%ovector .

function outl= PossibilityGenerator (n, fields)

if n==

outl=2;
else
if nargin<2
if n==2
fields=1;
else
fields=n-2;
end
end
maxfields=n-2;
outl =[];
maxValue=n—fields —1;
while (1)

if (isempty (outl)==1)
out2=zeros (1, maxfields);
out2 (1)=2;
for i=1:fields -1
out2(i+1)=1;
end
out2(fields)=out2(fields)+n—fields —1;
else
out2=outl (B(1) ,:);
lasttouch=find (out2,1,'last');
while (out2(lasttouch) = 1) ||(lasttouch=—
find (out2,1, " 'last"') && out2(lasttouch)
<=2)
lasttouch=lasttouch —1;

end

if lasttouch <2
break ;

end

if ((out2(lasttouch)=—=maxValue) && (maxValue
>2))

34

out2 (lasttouch)=out2(lasttouch) —1;
out2 (find (out2,1,'last'))=out2(find (out2
,1, tlast ")) +1;
end
out2 (lasttouch)=out2(lasttouch) -1;
out2 (lasttouch —1)=out2 (lasttouch —1)41;
end
outl=cat (1,outl,out2);
B=size (outl);
end ;
if fields >1
outl=cat (1,outl,PossibilityGenerator (n, fields -1))
end
end
end

Listing 38: A function to test a given map for new periodicies

%@n the length of the fixpoint whose periodicity shall be
determined

%am users definition of periodicity giving the amount of
consecutive

%identical outputs needed to be called periodic.

function [out] = PeriodicityCheck (n,m,x,A)

func=Generator3 (n,x,A);

funcO=omega2('0"' ,A);

funcl=omega2('1"',A);

columns =[];

out =[];

A=[];

% generating the already known
periodicity cases

for i=I1:numel(func0)
if strecmp (funcO(i),funcl(i))

columns=[columns i-1];

end
end
BaseExpansion=QadicBaseExpansion (n,numel (func0));
% generating the periodicity cases from

Corollary 2.8-——————————————————
for i=setdiff(divisors (numel(func0)),1) %
for h=0:(numel(func0)/i)-1
if sum(ismember ((numel(func0)/i-h):(numel(func0)/
i):numel(func0) ,columns+1))==i && periodic (
funcO ,numel (func0)/i-h,numel(func0)/i)
for j=2:length (BaseExpansion)
const2=0;
for k=1:find (BaseExpansion(j,:) ,1,"
last ')-1

35

if mod((BaseExpansion(j,k)+1+h) ,(
numel (func0)/i))==0
const2=1;
end
end
if BaseExpansion(j, find (BaseExpansion (
ji,:),1, ' last"))==((numel(func0) /1)
—1-h) && “const2
A=JA; j numel(func0)." find(
BaseExpansion (j,:) ,1,"'last"')/i

I

end
end
end
end
end
% generating the periodicity cases from

Lemma 2.7-————————————————
for i=2:length (BaseExpansion)
constl=sum(BaseExpansion (i, find (BaseExpansion(i,:) ,1,
"last '))= columns);
if isempty(find (BaseExpansion(i,find (BaseExpansion(i
,:) .1, " last '))= columns,1,'last"'))
const3 =0;

else
const3=columns (find (BaseExpansion (i, find (
BaseExpansion(i,:) ,1,'last'))=— columns,1,"
last'));
end
const2=(sum(const3=— BaseExpansion(i,1:(find (

BaseExpansion(i,:) ,1,'last')-1)))==0);
if constl && const2
A=[A; i numel(func0).” find (BaseExpansion(i,:) ,1,"
last ')];
end
end
A=reduce (sortrows (A));
for i=1:size (A1)
=A(1, 1)
while j<n—(A(i,2)+1)
A=[A;j+A(1,2) A(i,2)];

.]:J+A(1 72) ;
end
end
A=reduce (sortrows (A));
% calculating all new periodicity

for i=setdiff(1l:n,A(:,1))
k=floor ((n-1i) /m) ;
for j=1:k

36

if periodic(func,i,j)
out=[out; i-1 j];
end
end
end

for i=1l:size(A,1)

k=floor ((n-A(i,1))/m);

h=A(i,2);

if iT=1 && A(i-1,1)=A(i,1)

C=union (C,h:h:k);

else

C=h:h:k;

end

if i=— size(A,1) || A(i+1,1)"=A(i,1)
for j=setdiff (1:k,C)

if periodic(func ,A(i,1),
out=[out; A(i,1)-1j

i)
15

end
end
end
end
out=sortrows (out) ;
% generall periodicity check
% for i=1:n
% k=floor ((n—1i) /m);
% for j=1:k
% if periodic(func,i,j)
% out=[out; i-1 j];
% end
% end
% end
% function to check a certain
periodicity
function outl = periodic (func, start, period)

poslocl=func(start);

posloc2=start;

while func(start)=— poslocl && posloc2<length (
func)
poslocl=func(posloc2);
posloc2=posloc2+period;

end

if posloc2+period>length (func)
outl=1;

else
outl=0;

end

end

37

109

110

111

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

%Since 2018 there is a built—in function divisors(n) in

matlab .

Y%For users with outdated versions we recommend this
function we got from

%https://de.mathworks.com/matlabcentral /answers /21542 —
find —divisors —for —a—given —number

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

function d = divisors(n)

%DIVISORS (N) Returns array of divisors of n

if “isscalar (n)
error ('n must be a scalar ');
end
if n <1
error ('n must be positive integer ');
end
if n=1
d =1;
return ;
end
f = factor(mn);
pf = unique(f);
for a = 1l:length(pf)
o(a) = sum(f — pf(a));
end
mi = zeros(size(0));
d = zeros(1,prod(o+1));
a = 1;
carry = 0;
while “carry
d(a) = prod(pf. mi);

a=a+ 1;
if mi(l) < o(1)
mi(1) = mi(1) + 1;
else
mi(1l) = 0;
carry = 1;
end
for b = 2:length (o)
if carry

if mi(b) < o(b)
mi(b) = mi(b) + 1;

carry = 0;
else
mi(b) = 0;
carry = 1;
end
end
end
end
d = sort(d);

end

38

end

Listing 39: A function to reduce a given matrix

Yreduce (A)
%Given a row—sorted Matrix A. Deletes all
rows of A.

first entrie and
%a multiple second entrie of another row.
function [out] = reduce(A)
out =[];
while “isempty (A)
i=A(1,1);
out2 =[];
while “isempty (A) && A(1,1)=i
out2=[out2; A(1,:)];
A1) =(];
end
for j=l:size(out2,1)
for k=j+1:size(out2,1)

(k,2) ,out2(j,2))==0

end
end
end
out2(all(Tout2,2) ,:)=[];
out=[out;out?2|;
end
end

unnecessary

%These are for the given purpose those that have same

if out2(j,1) =0 && out2(k,1) =0 && mod(out2

out2 (k,:)=zeros (1,size (out2(k,:) ,2));

39

	Rotation substitutions
	Subshifts
	Primitive substitutions
	Analysis of Q

